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Abstract— The growing interest in connected autonomous
vehicles (CAVs) has intensified the focus on technologies and
algorithms that enhance behavior, comfort, and safety. Among
these, the concept of Digital Twins (DT) represents an emerging
field of research that is now beginning to be applied to
autonomous systems. Traditional Advanced Driver-Assistance
Systems (ADAS) can prevent real-time collisions using sensor
data. However, we propose that employing a DT can enable the
accounting for complex, simulated decisions before they occur in
reality. This paper introduces an initial model of a Digital Twin,
founded on an internal simulator aligned with vehicle control
architecture, for real-time hazard prediction and effective
decision-making. Our DT synchronizes with the vehicle’s state
to simulate various hazardous scenarios in advance, allowing for
preemptive actions. To support our hypothesis, we introduce an
algorithm for the early detection of potential collisions between
CAVs and pedestrians through the unsupervised simulation of
diverse traffic scenarios. This solution integrates the CORTEX
cognitive architecture with CARLA for internal simulation,
leveraging probabilistic models to select optimal scenarios.
Employing data from external pedestrian cameras, a particle
filter predicts the most probable pedestrian trajectories via
DT simulations, thereby informing safe maneuvers. Although
the algorithm itself is established, the novelty of our approach
lies in incorporating a simulator within the digital twin. This
simulator, informed by real-time data on the vehicle’s and
environment’s state, facilitates appropriate responses to unpre-
dictable behaviors. We have conducted extensive tests with an
actual autonomous electric vehicle on a university campus to
validate the system’s predictive and adaptive functions.

I. INTRODUCTION

Digital Twin (DT) technology is emerging as a key tool
for optimizing complex systems like Connected Autonomous
Vehicles (CAVs) [1]. DTs, virtual replicas of physical sys-
tems, have gained accuracy and power thanks to advance-
ments in artificial intelligence, IoT, Cyber-Physical Systems,
and cloud computing [2].

In contrast to traditional Advanced Driver-Assistance Sys-
tems (ADAS), which are primarily reactive and focus on
collision avoidance, DTs offer predictive capabilities that
can enhance decision-making and safety. By utilizing ve-
hicle sensor data, DTs simulate various driving scenarios,
serving as a comprehensive, anticipatory monitoring tool.
Unlike ADAS, which struggles with complex pedestrian
interactions, DTs enable real-time simulation of multiple
future scenarios for nuanced decision-making. The true value
of DTs lies in building mathematical models from this
real-time data, allowing interrogation to understand future
vehicle behavior and generate autonomous commands. This

1All authors are with RoboLab research group, University of Ex-
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(a)

(b)

Fig. 1: 1a shows Melex golf car, which will be used to test
a digital model with its sensor. Fig. 1b shows both the real
and simulated world.

contributes to more efficient, reliable mobility, bolstered by
the substantial live data that can be fed into the model [2].

In Figure 1a, a CAV with multiple sensors connects to
a central computer, which sends data to the cloud. Figure
1b shows the DT model of the vehicle and environment.
Advanced physics engines and rendering simulate vehicle
behaviors like sensor activity and command outcomes, aiding
quick, informed decision-making.

This paper offers several contributions: (i) it extends an
existing control architecture, CORTEX [3], to incorporate an
internal simulator, essentially converting it into a DT based
on sensor data and external devices. This is integrated with
the realistic CARLA simulation environment [4]; (ii) we
introduce an algorithm enabling the DT to run multiple real-
time simulations, comparing results to actual measurements
for Particle Filter (PF) estimation of pedestrian trajectories.
While the PF algorithm is well known, it is just one example
of integration and the strength of a digital twin to detect

2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 14-18, 2024. Abu Dhabi, UAE

979-8-3503-7770-5/24/$31.00 ©2024 IEEE 3182

20
24

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 | 

97
9-

8-
35

03
-7

77
0-

5/
24

/$
31

.0
0 

©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IR

O
S5

85
92

.2
02

4.
10

80
23

33

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on April 29,2025 at 10:53:52 UTC from IEEE Xplore.  Restrictions apply. 



risky situations using multiple simulations; and (iii) the
architecture is validated in real scenarios, where we evaluate
the use of the digital twin with the proposed algorithm
to make decisions affecting vehicle speed based on these
simulations.

II. RELATED WORK

Autonomous vehicles operate without human intervention
using sensors, cameras, radar, LIDAR, and AI algorithms [5].
CAVs aim to improve road safety, alleviate traffic, enhance
mobility, and lower environmental impact. Yet, they face
technical challenges such as reliability and pedestrian safety
[6]

DTs are one of the emerging technologies that can address
some of these challenges. DTs can enable various applica-
tions, such as simulation, optimization, prediction, diagnosis,
control, and maintenance of physical systems [7]. Moreover,
DTs can facilitate communication and collaboration between
stakeholders involved in the design, development, and oper-
ation of physical systems [8].

In CAV, DT can support different aspects of driver as-
sistance, such as perception, planning, decision-making, and
control. For example, in [9], the authors review the state-of-
the-art applications of DT technology in various aspects of
intelligent electric vehicles, such as predictive mobility, ad-
vanced driver assistance systems, vehicle health monitoring,
battery management systems, power electronic converters,
and power drive systems. In [10], the authors describe real-
world experiences with DTs, where they develop a paradigm
for a practical autonomous driving system. In the context of
driving assistance, a DT can capture and simulate various
aspects of pedestrian safety, such as sensor measurements,
vehicle dynamics, traffic conditions, and driver behavior
[11], [12]. A DT can also enable data-driven optimization,
verification and validation, fault diagnosis and recovery,
and human-in-the-loop learning for driver assistance systems
[13], [14]. This article investigates DT for driver assistance,
focusing on pedestrian safety. We provide a DT architecture
that allows for the simulation of multiple situations in real-
time and use a particle filter-based methodology to maintain
a representation of the virtual replicas. Tracking pedestrians
using the PF makes acting on the vehicle’s braking system
possible, improving vehicle safety.

III. AN INNER SIMULATION ARCHITECTURE FOR
CONNECTED VEHICLES.

Figure 2 provides an overview of the proposed DT frame-
work for autonomous driving of connected vehicles. The fig-
ure shows three blocks. The block on the left represents the
physical world, while the middle block shows the CORTEX
cognitive architecture. The shared Working Memory (WM)
is depicted as a graph whose nodes represent (among other
things) grounded elements of the physical world, and the
edges represent relationships among them. A more detailed
description of CORTEX and how agents communicate its
information can be found in [3]. Finally, the rightmost block
represents the internal simulator or DT of the vehicle, which

has been integrated into CORTEX as a drivable module that
can be synchronized, started, or queried at any time.

A. The Physical World

The environment, vehicle with its devices, and external
sensors communicating through Vehicle-2-everything (V2X)
protocols make up the physical world. In this work, an
electric car has been equipped with a rig of RGBD cameras
mounted around the roof to provide a 360o field of view.
Additionally, the lower part of the external plastic cover has
an array of interleaved ultrasound and point LIDAR sensors.
The vehicle’s global position is determined using a GPS-RTK
system. The vehicle communicates with a remote monitoring
computer via a WiFi6 router.

B. Cortex Architecture

The cognitive architecture CORTEX serves as the con-
troller for the CAV, and a schematic view of it can be seen in
Figure 3. The most important aspect of the experiment is the
WM, which is located in the center. This WM is a distributed,
shared graph with M nodes and E edges, each having its
associated attribute list. The DT stores all the physical and
semantic information of the environment.

Since the graph is distributed (i.e., agents may run in dif-
ferent machines), it exists as a set of local copies maintained
by the agents involved. These copies are synchronized using
Conflict-Free Replicated Data Type (CRDT) [15] and Data
Distribution Service (DDS) [16] technologies, which allows
consistent in the system. Agents (e.g., monitor, environ-
ment perception, or navigation software agents) update the
graph by adding new sensor readings, estimated geometric
relations, or logical predicates between nodes. The car and
all its sensors and actuators are nodes in the WM. Each
device is connected to the vehicle through a specific type
of edge called RT , which encodes its physical position and
orientation. The primary purpose of the WM is to provide
an updated context for all agents to make better-informed
decisions. Figure 3 provides a representative example of
the navigation process, featuring the vehicle along with its
onboard sensors, an external camera, and any identified
pedestrians. Presented as a graph, this representation is
accessible to all agents in the architecture, each maintaining
a synchronized copy.

C. Carla Simulator

The third component in Figure 2 is a built-in simulator
managed by the CORTEX architecture. We opted to use the
CARLA simulator due to its wide range of tools for training
and validating autonomous driving systems. To create the
3D representation of our working environment (as shown in
Figure 1b), we employed RoadRunner, an interactive editor
from MathWorks specializing in designing 3D traffic routes.
Additionally, we used Blender to create the 3D model of
our autonomous vehicle. Using CARLA, which provides
realistic assets such as buildings, pedestrians, and cars, along
with the 3D models of our test environment and vehicle,
we could recreate traffic scenarios based on specific events
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Fig. 2: Overview of the DT architecture

Fig. 3: Schematic view of the current version of CORTEX.

in our real environment. One of the main accomplishments
of this research has been the incorporation of CARLA as
a controllable resource for the control architecture. The
agent that controls CARLA can work in two modes: a) by
synchronizing the simulator with the state of the WM and
b) by initiating a set of simulations from the current state
and with different parameters until a final condition is met
or during a maximum time. In our case, the simulations are
meant to explore potential courses of action of the detected
pedestrian in the current scenario and prepare the car for a
quick reaction; however, we can use these simulations for
different behaviors.

IV. ALGORITHM FOR ENHANCING THE SAFETY OF
PEDESTRIANS USING DT

Within this deployment of the CORTEX architecture, we
present an algorithm to derive an informed control action in
risk situations created by the presence of pedestrians. The
process is illustrated in Figure 4. It involves gathering infor-
mation in advance from both the autonomous vehicles, which
sends data collected by its sensors to the CORTEX shared

Fig. 4: Overview of the algorithm for enhancing the safety
of pedestrians using DT.

memory, and from pedestrians in the vehicle’s surroundings,
whose position in the world is also transmitted via V2X
communication and shared in CORTEX (1). Several soft-
ware agents with different responsibilities access CORTEX,
including the Monitor agent (2). This agent is in charge of
producing a series of initial simulation conditions, such as the
simulation identifier, simulation duration, and list of actors
present in the work environment, along with their position
in it and their role, which it then forwards to the CARLA
SIM agent (3).

The CARLA Sim agent communicates directly with the
CARLA simulator and generates a set of N simulations
based on the initial conditions received from the Monitor
agent (4). These simulations run in parallel at a much faster
speed than real-time and for each of them, the behavior of
the actors involved is defined by pseudo-random behavior
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(5). Our algorithm’s objective is to filter out only those
simulations that match the reality perceived by the vehicle.
To achieve this, we use a particle filter. The PF is a popular
method for estimating the state of nonlinear systems with a
partially observed state based on the Rao-Blackwell formula
(see Casella and Robert’s work [17]). Each generated sim-
ulation considers the randomness of the trajectories of the
different actors and their impact on driving safety. With this
information captured in advance, we can act on the vehicle’s
braking system to improve pedestrian safety (6-10).

In this paper, the set of particles represents a hypothesis
of pedestrian (and can be extended to include vehicles’
poses) trajectories that we consider correct (i.e., Maximum
a Posteriori estimation). Then, using this assumption, every
particle is associated with a simulation of our DT and will
maintain its trajectories. Let xt be the state space defined by
the main parameters of the simulation, including the position
and velocity of each pedestrian in the scene for the set of
N simulations. Let x(i)n

t be the state of pedestrian i at time
t in the simulation n, where i = 1, . . . ,M , n = 1, . . . , N ,
and t is the current time step.

x
(i)n
t =

[
p
(i)n
t

v
(i)n
t

]
(1)

For each simulation n, p
(i)n
t represents the position of

person i, and v
(i)n
t represents their velocity at time t.

Additionally, let y
(i)
t be the measurement of person i (i.e.,

pedestrian position) at time t from sensor readings, which is
stored in the WM.

yit = p
(i)n
t + ϵ

(i)
t (2)

where ϵ
(i)
t is measurement noise, which depends on the

real sensor. A similar notation could be used to include
the vehicle’s pose estimate. Each particle is a sample from
the posterior distribution and is represented by the tuple
(x1:t, wt), where wt is the weight associated with the particle
at time t. The weights approximate the posterior distribution,
with particles with higher weights having a more significant
influence on the approximation. Therefore, the PF performs
the following steps:

1) Initialization: At time t = 1, create N particles
(x

(n)
1 , w

(n)
1 )n = 1N from an initial distribution. In our

approach, this initial distribution for the pedestrian
pose is normal, with an average equal to the pedestri-
ans’ pose stored in the WM and a standard deviation
of σp. The speed will also be derived from a normal
distribution with an average of 1.5m/s (normal speed
of a random person) and a standard deviation of σv .
We set w(n)

1 = 1/N .
2) Importance Sampling: For each time step t = 2, 3, . . .,

T , do the following steps:
• For each simulation (x

(n)
1:t−1, w

(n)
t−1), create a new

state x
(n)
t from the state transition distribution

p(xt | x(n)
t−1). In our approach, this transition distri-

bution considers the results of each realistic scene

simulation by different conditions (pedestrians and
vehicles).

• Compute the importance weights w
(n)
t ∝ p(yt |

x
(n)
t ) for each particle. Note that the weights are

proportional to the likelihood of the observation
given the particle’s state. At this point, we use
the updated information from the physical world
stored in the WM. The final pedestrian poses for
each actor in each simulation are compared with
the actual pose of each actor. For a pose to be
considered correct, all actors must have an error
in the simulated final pose compared to the real
pose below a certain threshold.

• Normalize the weights so that
∑N

i=1 w
(i)
t = 1.

• Resample particles with replacement from the
set

{
(x

(n)
1:t , w

(n)
t )

}
n = 1 . . . N , with probability

proportional to their weights. This step ensures
that particles with higher weights are copied more
often, resulting in a new set of N simulations{
(x1 : t(n), w

(n)
t )

}
n=1...N

. The systematic resam-
pling method is chosen among the multiple algo-
rithms to perform resampling.

3) Filtering: after resampling, the particle set represents
the current posterior distribution. The estimated state
of the system can be computed as a weighted average
of the particles:

x̂t =

N∑
n=1

w
(n)
t x

(n)
t (3)

where x̂t is the estimated state of the system at time
t. The estimated trajectory of the pedestrian can then
be obtained by tracking the estimated position of the
pedestrian over time.

After the simulations are complete, based on the simula-
tion time set in the initial conditions, the CARLA Sim agent
collects the results and sends them back to the Monitor agent
for processing. These results include various parameters for
each simulation, such as i) collision, which indicates whether
the autonomous vehicle has collided with any actor and, if
so, which actor it hit with; and ii) a list of actors and their
positions at different points in the simulation.

After filtering out the invalid simulations, processing the
correct results provides information to the WM in CORTEX.
This information is represented as a Virtual Collision edge
that connects the vehicle node to the actor(s) with which it
collided during the simulation. This edge has two attributes:
”Collision”, which represents the percentage of simulations
where the vehicle has collided with the actor, and ”Time to
Collision”, which is a list that stores the time to collision for
each simulation.

Using these edges and their information, the agent respon-
sible for controlling the vehicle can adjust its behavior (e.g.,
car velocity) based on the collision probabilities and the time
to collision.
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V. EXPERIMENTAL RESULTS

Tests were conducted to assess the proposed system’s per-
formance and ability to predict pedestrians’ behavior along
an autonomous vehicle’s route in real-time, thus detecting
possible dangerous situations. Specifically, in these tests,
a CAV travels along a path in the Polytechnic School of
Cáceres while a pedestrian moves through the same area.
The Deep Neural Network (DNN), known as You Only
Look Once (YOLO)1[18] effectively identifies all pedes-
trians, and their skeleton is subsequently analyzed by a
second DNN, JointBDOE2, which estimates their orientation
[19]. Additionally, the ByteTrack algorithm [20] is employed
to track the pedestrians, providing them with a consistent
identification tag.

A. Validation of the Digital Twin for the use case

The results are presented using the parameters obtained
from the analysis of the simulations performed with the DT,
and the speed of the autonomous vehicle is calculated based
on these parameters. The following parameters are used:

• Collision probability: The percentage of valid simula-
tions in which a collision with another actor occurs.

• Time remaining until the next collision in seconds.
• Distance between vehicle and pedestrian in meters.
• Vehicle speed in meters per second.
The tests were conducted as follows (see Fig. 5): (i) the

CAV receives information from all sensors, updating the
WM, (ii) based on this information, n = 8 simulations of
6s are generated in the DT, modifying values related to the
pedestrian’s behavior pattern over time; (iii) the simulations
are validated against real information acquired by the sen-
sors, removing erroneous simulations and generating new
ones; (iv) the behavior of the vehicle is modulated based on
the simulation results; (v) New initial simulation conditions
are generated by updating the variables related to pedestrian
movement and actor positions based on previous simulation
results and sensor data.

An example of the simulation results obtained can be
seen in Fig. 6. The pedestrian (represented by the red dot)
remains static outside the path boundaries, followed by the
CAV (violet dot). A yellow dot represents each final position
of the pedestrian in those valid simulations, while those of
the CAV are depicted in green. The result shown in Fig. 6
indicates a high degree of uncertainty in the direction the
pedestrian can move.

In contrast, Fig. 7 shows the result of a pedestrian moving
in a given direction, causing a correction in the simulated
behavior of the pedestrian and generating simulations closer
to the direction the pedestrian is moving in. Throughout
the simulations, the existence of collisions or dangerous
approaches increases the probability of collision and records
the remaining time (in simulation) until the crash occurs.
Subsequently, the agent monitoring the simulation collects
this information and influences the vehicle’s behavior to

1We use YoloV8 from Ultralytics. https://www.ultralytics.com/
2https://github.com/hnuzhy/jointbdoe

avoid collision in the real world. Additionally and iteratively,
it generates a new set of simulations.

In the upper graph on Figure 8, it can be seen how
as collisions start to occur (increase in the probability of
collision), the behavior of the real vehicle is modulated by
reducing the speed and even stopping the car, moving to a
safer navigation mode. Each of the collisions detected in the
simulation is recorded, helping to generate an estimate of the
time to collision.

The anticipation distance depends on the vehicle’s and the
pedestrian’s speed. As can be seen in Fig 8, once the car
has stopped (t=11), it must remain in this state until the
probability of collision (pedestrian off the road) disappears,
regaining mobility once the pedestrian is out of danger.

B. Real-time performance of the algorithm

Fast and reliable decision-making is critical to validate
the DT system’s usability. This section assesses the digital
twin’s simulation execution times, which depend on vari-
ous factors: server number, simulations per thread, and the
real-time duration for simulation. For this experiment, we
simplified the previous case and set the vehicle straight
towards the pedestrian. Figure 9 shows the average execution
times relative to the real simulation time and the number of
simulations per CARLA instance. Notably, longer simulated
times and more simulations per instance increase execution
times. Our system demands swift responses, so we dismiss
any parameter sets exceeding one-second execution and view
those above 0.6 seconds as unfavorable. As indicated in the
previous section, with 8 simulations and with a time for each
simulation 6s, we obtain adequate execution times.

Additionally, we highlight our approach’s scalability. In
more complex scenarios, with multiple pedestrians or vehi-
cles, we can increase the number of simulations by increasing
the number of instances to the CARLA server, running
in parallel. Computing times would not be significantly
affected. This makes our approach scalable and efficient,
even in areas with high pedestrian activity.
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Fig. 5: Various snapshots of the experiments are depicted. The top row, from left to right, presents the experimental setup,
the pedestrian detection algorithm, and the status of the WM. The bottom row, also from left to right, displays different
states of one of the simulations and the outcome (brake) produced by the system after implementing the PF.

Fig. 6: Pedestrian (red dot) stationary outside the path (black
marks) of the CAv (violet dot). Simulation results are orange
(pedestrian) and green (CAV), respectively.

VI. CONCLUSIONS

This paper presents a new method to detect potential colli-
sions between connected autonomous vehicles and pedestri-
ans. Our approach uses the Digital Twin scheme, incorporat-
ing real-world data into a comprehensive internal simulation
framework. We have integrated the CORTEX cognitive archi-
tecture with the CARLA simulation environment to create a
robust Digital Twin model. This fusion facilitates concurrent
real-time simulations of various traffic scenarios, enabling
predictive risk assessment through probabilistic modeling
and the formulation of preventive strategies. The corner-
stone of the probabilistic algorithm we present is the well-
known particle filter. However, our work’s true innovation

Fig. 7: Pedestrian (red dot) moving within the path (black
marks) of the CAV (violet dot). Simulation results are orange
(pedestrian) and green (CAV), respectively.

is encapsulated in our digital twin’s capabilities, designed to
anticipate and react to potential hazards before they manifest
themselves, marking a significant advance in proactive safety
measures in CAV operations.

We tested our system on a real CAV on the university
campus to validate it. The results show how our solution
successfully detects and avoids collisions with pedestrians in
various scenarios, anticipating their possible trajectories and
potential interactions with the vehicle. We think anticipation
using an embedded Physics simulator is becoming a key
player in robotic cognitive architectures. However, much
work remains to be done on integrating and controlling this
powerful asset in current autonomous systems.
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Fig. 9: Average execution time of the simulations depending
on the number of simulations per CARLA instance and the
total time to simulate in each simulation.

Fig. 8: Evolution of the relevant parameters during the
experiment.
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